CS学习资源

课程来源: Udacity, Cousera,网易公开课

推荐课程:

0, MIT计算机科学导论,5星。请到网易公开课找,或者iTunes U等找英文资源。我上课的时间是大四。讲的内容基本是以python编程为主,并且会涉及到一定的OOC(面向对象)的内容,鉴于后面的课都跟OOC没什么关系所以这个课也还是挺好的。

2, Udacity CS262 Programming Language:5星,通过build一个javascript和html的interpreter可以对计算机语言的运行方式有一个更深层次的理解。尤其是对于各种syntax error之类的。而且他的成品基本上是Udacity所有课里面最exciting的,老师的声音也很好听。难度适中。有前两个的基础应该问题不大

4, Coursera Machine Learning:4星,ML必须课需要说什么么。。。不过比较偏应用,会介绍Neural Network,但是对SVM基本上一带而过。还有recommendation system和别的一些较应用的内容。没有reinforcement learning的部分,unsupervised也比较浅。有PA,没有期末考试,一般人这课都能拿满分吧因为没有限制尝试的次数。。。用的语言是Octave/Matlab,难度一般。

15 Stanford Machine Learning: 4星。是iTunes U上面的,Andrew Ng在斯坦福的讲课视频,相比前面coursera的就更理论,虽然没有NN的内容,但是svm讲得很细,还有ica和reinforcement的部分。总之算是巩固基础,然后相辅相成。同样我还是很喜欢吴恩达老师的口音!

7, Udacity CS253 Web Application: 3星,挺不错的课,就是最后用GAP搭建一个非常简单的blog以及wiki。能够提供一些关于网页应用的insight(当然非常浅),做的东西也算是非常有意思的,另外用的平台是Google的GAP,国内的同学请准备翻墙。难度适中。而且最后一单元会谈到很多很实用的问题比如scale什么的。而且能给一些关于software engineering的idea。

8, Coursera Algorithms: Design and Analysis Part 1: 5星,这个是Stanford开的那版,不是Princeton的,后者我没上过不过据说更浅一些。老师很有激情语速也比较快,写字也很难看。。。不过看多了就习惯了。算法对CS是非常重要的,也是面试常考的。这个介绍的是基本概念big-O,还有sort和search。每周都有PA,基本是给input然后求output这样,不限定语言,不过python有时候会非!常!慢!难度适中

17, Udacity CS222 Differential Equation:3星,在学校基本算是没学过微分方程所以挺遗憾的。。。这个课也有涉及很多实际问题所以算是有趣。画的图也很好看。。。总之最后的感觉就是世界真和谐,世界真奇妙,世界真美好。而且用matplotlib,需要的同学可以借鉴一下。

9, Coursera Probabilistic Graphical Models: 3.5星,和Machine Learning的关系也没有那么大,还不算一定必选。老师是Coursera的另一位cofounder,内容是研究生级别的,很难,PA也很难。我现在有些概念也没完全理解透。。。而且内容很多。借用weibo上老师木的评价:“别的都是讲的术,图模型讲的是道”。自虐指数三星。我当时经常周六下午做这个PA做的死去活来。。。

20, Coursera Neural Networks for Machine Learning: 4星。现在Deep Learning的领军人大牛hinton亲自讲授。内容有点。。。晦涩,但是理解之后概念还是不错的。PA什么的难度也适中。不算特别变态。

23, Udacity CS271 Intro to Artificial Intelligence: 4星。Udacity当年的第一门课。两个cofounder讲。对于ML,NLP,CV,机器人,game theory等都有所涉及。看完了我突然觉得。。。尼玛原来我感兴趣的这些全都是AI啊。。。不难,没有PA,花点时间就好了。

24, Coursera Algorithms: Design and Analysis Part 2: 5星。必须的五星,之前的part 2,内容是greedy algorithm,dynamic programming和NP。涉及的东西很多,PA也变态了很多python真的特别慢。在此力荐pypy。没什么可说的算法是必须看的。而且这俩part加起来本科毕业生的水平至少就有了。。。

26, Coursera: Intro to Database: 3星 现在搬到Class2Go上面去了貌似。介绍数据库,包括一些xml啊json什么的还有nosql的部分。当然大头是SQL,因为考SAS证的时候学过了,所以也就看看。不过数据库对于big data什么的还是很重要的(准确地说nosql数据库还有DFS什么的很重要。。。),所以应该还是看看比较好。

37, Intro to Data Science: 4星,最近发现UW的课出其不意的很靠谱啊。。。这个课只上了第一周但是感觉来说是非常靠谱的,实用性很强,虽然相比CS感觉会更适合统计的同学。。。不过目前的感觉就是如果有志于做Data Scientist请一定要上这门课。会使用Python,SQL,R,基本上这些Data Scientist也是必须的。

总结:必上:MIT的导论,Udacity 262, 212,Coursera上斯坦福的算法。还有Andrew在Coursera和Stanford上面的两版Machine Learning。

About proudwolflc

a guy about to get some sense of doing stat research
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s